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We need a predictive
understanding of biodiversity

« Qur lives depend on 10%
biodiversity
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* Global change is fundamentally
altering the biodiversity

United
Nations
(2019):

The health of ecosystems on which we depend
IS deteriorating more rapidly than ever.

Current state of
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LIFEPLAN will generate a predictive understanding of global
biodiversity and its drivers

LIFEPLAN WILL:

Predict future state

Predict current state : )
given environmental change
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Lifeplan

Scalable o
Bayesian Distributed
inference, experiments,
spatiotemporal biodiversity
modelling research

Statistical,
mathematical

and
theoretical
ecology

Transformative understanding of life on Earth
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The Big AIM:
Global Joint Species Distribution Models

SPECIES COMMUNITY
LAND COVER AND CLIMATIC DATA LEVEL LEVEL
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Globally Relevant, Unbiased Community-level Data
Across Hierarchical Scales

Automated methods

Systematic sampling

Independent of expertise
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Insects captured by
malaise trap are

Global Malaise Trap Pilot Data (unpublished) dentified from DNA

&
Biggest systematically collected b 069 s
insect data in the world! 6@‘ (o /4
o‘
S kingd
N Ingaom:
2 million individuals - =) gdor
Animalia

Reliable _ Reliable taxonomic
200,000 species taxonomic placement currently
placement not possible

Spatial coverage is already global,
but with some gaps

Sampling
% locations where
we recorded
D. insulare

Diadegma insulare,
a parasitoid of the Cabbage
Moth Plutella xylostella



Statistical Methods for Big Ecological Data are Lacking

Interpretable models to

R

) . Huge data,
understand, explain and predict

many sources

,,,,,,,,,,,

a unique
combination of

Entity T T Sparsity and
resolution imbalance i TR

Complex structure

s
o

WWWWWMMWHWWWWWWMW
A0 00

0 OO 0 - £
1 O OO

WWWWWWWMWWWWWWMMWL
010000 0 0 O 5

O A O 10
O 0 O O

=g |
= - - wm !

““‘11%\""‘ T

S

8/10



The Synergy in Our Past Collaborations

BIG DATA STATISTICS STATISTICAL ECOLOGY COMMUNITY ECOLOGY

400 papers on 170 papers on 110 papers on
Bayesian statistics statistical ecology community ecology

- o,

JOINT SPECIES

DISTRIBUTION MODELLING
WITHAPPLICATIONS INR

Recent highlight:

Recent highlight: -
Book on joint }J

Recent highlight:
Science paper

2019 Mitchell Prize - best applied

paper in Bayesian statistics
internationally

species distribution
modelling (CUP)

on globally distributed
experiment

7 joint papers and manuscripts

12 joint papers and manuscripts

Highly cited by ISI (145 citations since 2017)

ECOLOGY LETTERS

Ecology Letters, (2017)

doi: 10.1111/ele. 12757

IDEA AND
LIl How to make more out of community data? A conceptual

framework and its implementation as models and software

LOGICAL MONOGRAPHS

01370

B ccouocch vonosres
=

A comprehensive evaluation of predictive performance of 33 species
distribution models at species and community levels

D. Fosrer,"
icoLe A. Hie,™
INEN, 2

of Helsinki, P.O. Box 65, Helsinki FI-00014 Finland
ersity of Science and Technology, Trondheim N

7491 9/10



aed ““certainty indicateg daty

wWo Japs
_\Nor‘d blg data Cha”e
Transformative statistical A?@a/ Xg@s Globally distributed
methods for Big Data sampling design

/ Transformative
= ; methods for Th €S y ner g y Of Climate change
global scale data disrupts species

analysis

communities

LIFEPLAN

A new understanding
of life on Earth

B

LETTERS

Predicting
diversity across

Your mobile

7. - S g
§ Virtual Taxonomist kingdoms ' @7
& identifies a s
#  million species - B - Methods in E -
\—" £ R (i Ecology and Evolution

Million Species
Distribution Model

Integrative understanding
of life on earth

10/10



DELIVERABLES, NOVELTY AND RELATION TO WORK BY OTHERS

METHODS

KEY ECOLOGICAL ECOLOGICAL GLOBAL JSDM: MODEL JSDM: DATA JSDM:
DELIVERABLES FRAMEWORK HYPOTHESES SAMPLING STRUCTURES TYPES PREDICTION
(12) (13) (14) PROJECTS (15) (16) (17) (18)
SPECIES SPECIES SPECIES
IDENTIFICATION: IDENTIFICATION: IDENTIFICATION: HMSC: PRESENT
DNA AUDIO IMAGE STATE
(19) (20) (21) (22)
STRUCTURE AND MANAGEMENT
DATA STORAGE
WORK PACKAGES BUDGET HOST SUPPORT MANAGEMENT TRAINING TIMELINE AND SHARING
(23) (24) (25) (26) (27) (28)
(29)
FEASIBILITY AND PILOT STUDIES
PROCESSES OUR RECENT
ACCESS TO SISO G HOW MUCH OUR RECENT ,
GLOBAL GSSP PILOT DATA SAMPLING IS FROM ] WORK:
DATA WORK: 2019
SAMPLING (31) (32) "ENOUGH"? PATTERNS? (35) SUBMITTED
(30) (33) (34) (36)
LOBAL BIRD
CALIBRATION: CALIBRATION: CALIBRATION: CALIBRATION: COLLABO- GLI(;TENIN p
FUNGI MALAISE AUDIO CAMERA RATORS e
(37) (38) (39) (40) (41) (42)




Key Deliverables of LitfePlan
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New Generation of
Statistical Methods

* For huge dimensional, highly structured,
sparse and imbalanced data

* Widely applicable across sciences,
engineering and technology

A Transformative Data
Resource

* Unbiased data across the globe on
millions of species

* Spatial resolution from 100 meters
to global scale

%

Transformative new

understanding of biodiversity

* Global Joint Species Distribution Models
will move community ecology towards a
predictive science

e LIFEPLAN will address long-standing
unsolved ecological hypotheses

R

Training of “Scientific Data
Scientists”

* Fundamentally different from
“industry” data scientists

e Tools to build & implement
realistic models & algorithms
driven by scientific knowledge




Ecological framework: community assembly processes

Starting point: present state-of-the-art

Conceptual framework.... ...and its statistical implementation
speciation and Phylogeny Influence of phylogeny Traits
adaptation C on species niches T

P

environmental /
) . P 4
filtering: abiotic ¥
neutral processes ¢ K : - Influence of traits
2] fGC ors ,,I ‘ species traits on species niches
T
! /! Unexplained variation Species niches y
i ¢ in species niches
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W
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< ) W . 9K L
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s W ¢ e Spatio-
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observed
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‘ w%\/ context
_ Yfl ) Data model Occurrence

LIFEPLAN WILL

Provide unprecented
global data across taxa
for testing and revising
this framework

Reveal the scale-
dependency of assembly
processes from 100 m to
global scale

In doing so:

establish the principles
for how communities are
formed around the world




LIFEPLAN will test long-standing ecological hypotheses

HYPOTHESIS: For micro-organisms “everything is everywhere but environment selects” (ref).

LIFEPLAN CAN TEST THIS BECAUSE: We will have global data both before (air) and after (soil) the
selection

HYPOTHESIS: Species range sizes are smaller towards the Equator, creating more diversity
among sites ("Rapoport’s rule”).

LIFEPLAN CAN TEST THIS BECAUSE: We will have systematic data on ALL taxa from ALL latitudes
and we can deal with sampling bias

HYPOTHESIS: Species richness in megadiverse but "hard” groups can be efficiently deduced from
the presence or richness of “indicator” species (Caro 2010).

LIFEPLAN CAN TEST THIS BECAUSE: We will have systematic data on ALL taxa from all sites and
we can deal with sampling bias.



Examples of Global Biodiversity Databases

Global Biodiversity Information Facility (GBIF) Global Fungi (Petr Baldrian et al.)

Occurrence records

1,333,916,155

Data sets

45,756

3771006

GENOMIC SAMPLE
RECORDS AVAILABLE

Global Soil Microbiomes FOR RESEARCH IN
THE GLOBAL GENOME

(Mohammad Bahram et al.)
T 3 e . BIODIVERSITY.

7

@ Moist tropical forests Temperate coniferous forests @ Mediterranean

@ Tropical montane forests Grasslands and shrublands @ Boreal forests. N ETWO R K
© Savannahs Southern temperate forests @ Arctic tundra

Dry tropical forests ® Temperate deciduous forests @ Independent soil
. ~
.
L] “e
o o
¥ ° . o o, e
L
@ °
.
. i
[ )
° °
L
l. ® 0 a Py .o
i )
o °
o ° L]
?



How “joint” is a joint species distribution model?

Ovaskainen et al: Hierarchical Modelling
of Species Communities (HMSC)

E 1 '. i RS

Ecology Let n doi- 10.111Vsle. 12757
IDEA AND
AL 14l How to make more out of community data? A conceptual

fr

k and its impl ion as models and software

Harris: Multivariate Stochastic Neural
Network (MISTN)

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2015, 6, 465-473 doi: 10.1111/2041-210X.12332

Generating realistic assemblages with a joint species
distribution model

Niche structure

N-1: joint modelling of species niches
N-2: dependency on traits

N-3: dependency on phylogeny

Hui et al: Bayesian ordination and
regression analysis (BORAL)

Methods in Ecology and Evolution

Methods in Ecology and Evelytion 2016,7, 744-750 doiz 10.1111/2041-210X. 12514
APPLICATION

BORAL — Bayesian Ordination and Regression Analysis

of Multivariate Abundance Data inr

Hui et al: Species Archetype Model (SAM)

eéa ECOLOGY

Volume 92 No. 4

To mix or not to mix: comparing the predictive performance
2
of mixture models vs. separate species distribution models

Biotic intetarctions
B-1: Estimation of association networks
B-2: dependency on traits

B-3: dependency on phylogeny

Clark et al.: Generalised
joint attribute

) ECOLOGICA
modelling (GJAM) MONOGRAPHS
(J( ner. Jll7L (1 ]Olnt attr lbut( I]]()(]( ]II]Q t()l b]()(]l\'(‘r\'lt\ dllal\ \1\2

median-zero, multivariate, ‘multifarious data

Golding and Harris: Bayesian community
ecology analysis (BC)

Package ‘BayesComm’

Thorson et al: Joint Dynamic Species
Distribution Models (JDSDM)

Joint dynamic species distribution
‘., MELLLEM models: a tool for community ordination

and spatio-temporal monitoring

‘é/ James T. Thorson'*, James N. lanelli®, Elise A. Larsen’, Leslie Ries*,

Mark D. Scheuerell®, Cody Szuwalski®” and Elise F. Zipkin®®

HMSC

BORAL X X X
GJAM X
JDSDM X X
MISTN X
SAM X

BC X




Data types utilized by Joint Species Distribution
Models

Ovaskainen et al: Hierarchical Modelling of Harris: Multivariate Stochastic Neural ¢
Species Communities (HMSC) Network (MISTN) vaum . Dnu
7 T G . . Occurrence Environment
ECOLOGY LETTERS Methods in Ecology and Evolution _ ol o
s L e Methods fution 2015, 6, 465-473 doiz 10.1111/2041-210X.12332 spatlo-temporalconten E ‘2
IDEA AND ’ . a|s ] c
How to make more out of community data? A conceptual Generating realistic assemblages with a joint species og Y Ol x
fr k and its impl ion as models and software distribution model S 2020 E _g E E
2000 al” al®
- . - . - - 1980 (m] species o covariates
Hui et al: Bayesian ordination and Hui et al: Species Archetype Model (SAM) . ?u" ? -
regression analysis (BORAL) BY 48 o W e W seee
- . A 011 o oo W Phyl had Trai
Methods in Ecology and Evolution esa ECOLOGY - E_I P viogeny o raits
::::::EOBNayesianOrdinationand Regression Analysis To mix or not to mix: comparing the prudicti\‘(‘ purf()rmam‘c w @ ol §
of Multivariate Abundance Data in r of mixture models vs. separate species distribution models species traits
Clark et al.: Generalised joint attribute Golding and Harris: Bayesian community
modelling (GJAM) ecology analysis (BC) HMSC « « « « «
‘ ’ BORAL X X X
Package ‘BayesComm
GJAM X X (x)
: : : JDSDM X X X
Thorson et al: Joint Dynamic Species Y: S : S S fi
Disribution Models (JDSDM) + SPECIES - opace, ime, ... MISTN X X
T el Joint dynamic species distribution X: Environment
> MELELEE models: a tool for community ordination T: Traits SAM X X
and spatio-temporal monitoring :
James T. Thorson'*, James N. lanell, Elise A. Larsen®, Leslic Ries’, C Phylogeny BC X X

Mark D. Scheuerell®, Cody Szuwalski®” and Elise F. Zipkin®®
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Predictive performance of Joint Species Distribution

Models

Ovaskainen et al: Hierarchical Modelling of
Species Communities (HMSC)

Tt P e ——
ECOLOGYEITEITERS

Ecology Letters, (2017) doi: 10,111 Vele 12757
IDEA AND
LIl How to make more out of community data? A conceptual
fr k and its impl ion as models and software

Hui et al: Bayesian ordination and
regression analysis (BORAL)

Methods in Ecology and Evolution

Methods in Ecology and Evoiution 2016,7, 744 750 doiz 10.1111/2041-210X.12514

APPLICATION
BoRAL — Bayesian Ordination and Regression Analysis
of Multivariate Abundance Datainr

Clark et al.: Generalised joint attribute
modelling (GJAM)

Thorson et al: Joint Dynamic Species
Disribution Models (JDSDM)

Joint dynamic species distribution
models: a tool for community ordination
and spatio-temporal monitoring

James T. Thorson'*, James N. lanelli®, Elise A. Larsen®, Leslie Ries*,
Mark D. Scheuerell®, Cody Szuwalski®” and Elise F. Zipkin®°

MACROECOLOGICAL
METHODS

Harris: Multivariate Stochastic Neural
Network (MISTN)

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2015, 6, 463-473 doiz 10.1111/2041-210X.12332

Generating realistic assemblages with a joint species
distribution model

Hui et al: Species Archetype Model (SAM)

[l ECOLOGY

Volume 02 No. 4

To mix or not to mix: comparing the predictive performance
&
of mixture models vs. separate species distribution models

Golding and Harris: Bayesian community
ecology analysis (BC)

Package ‘BayesComm’

Predictive performance was evaluated for data on six taxonomical
groups, for interpolation and extrapolation, for individual species and
community features

D. Predictive performance: match between the predicted and validation ([]) data
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ECOLOGICAL

MONOGRAPHS

A comprehensive evaluation of predictive performance of 33 species

distribution models at species and community levels

Anna Noraera (3, Nerea Asrrco,™ F. Guiaume Buancner,' FReperick R. ADLER,® BARBARA | ANDERSON,

Jant Antriea, MiGuee B. Aratio* ' Tap Datras,' Davio Dussox,'! Jane Emi,'? Scort D. Foster, '

Ricrarp Fox, ' Janer Fraskun,'* WiLuiam Gopsor,'® Axtoise Guisax,'™'*

Bos O'Har,'” NicoLe A. Hi ™

Rosexr D. Hotr.?! Francrs K. C. Hu ™ Maane Hussy, ™ Jonn Atie KAvas,™ Avekst Lenkomen,

Miska Luoro.”” Hemt K. Mob,"® Graeme Newerr,™ Tan Rexner,” Tomas Rosuin

%0 Janne Sonives (3,7

WiLkriep THUILLER,™ JaRNO VANHATALO,' Davip Warton,™> Mart Wiite,™ Nikiavs E. Ziumermany, ™

JDSDM

DoMINIQUE GRAVEL, AND OTs0 OVASKAINEN

Was excluded from
comparison as does not apply
to species rich communities
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DNA-based species identification

Ovaskainen et al: PROTAX PROTAX is the only method that explicitly models species
gy i’ z not known to science and species for which there are no
TECHNOLS)GIE)AL ADVI;NC.E'S AT THE INTERFACE BETW?EN ECOLOGY AND S.';ATILSTvIC; A r ef e r e n C e S eq u e n C eS
Quantifying uncertainty of taxonomic placement in DNA
barcoding and metabarcoding
l Pro1AX |l RoP [l SINTAX  Comparison of predictive
accuracy based on fungal
Edgar: SINTAX 100 ~ mock-community data.
= a0 - Abarenkov et al. 2018,
SINTAX: a simple non-Bayesian E‘E New Phytologist
taxonomy classifier for 16S and ITS > 60 -
sequences %
S 40 -
: :  and
2 2- ) Fungl an
Wang et al: RDP arthropods
0 .
Naive Bayesian Classifier for Rapid Well-known taxa, high  Poorly-known taxa,
Assignment of rRNA Sequences coverage of reference  low coverage of

into the New Bacterial Taxonomy" sequences reference sequences
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Audio-based species identification

Ovaskainen et al: ASI

ECOLOGY LETTERS

Ll

I
|

Ecology Letters, (2018) 21: 1244-1254 doi: 10.1111/ele.13092

Animal Sound Identifier (ASl): software for automated

identification of vocal animals

Katz et al: monitoR

Articles

Tools for automated acoustic monitoring
within the R package monitoR

Jonathan Katz &%, Sasha D. Hafner & Therese Donovan
Pages 197210 | Receive d 18 Sep 2015, Accepted 28 Dec 2015, Published online: 05 Feb 2016

ASI does not require a-priori templates, but generates them
automatically from the training data

© monitoR o AS|
L ! ™
1 ' . L 4 .Of ] o o
0.8 | :
' O
= 06| : o
S - o
5 :
04 ' e®
02| , o}
o) ' Y
o, I | L ! |I | | L | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Comparison of predictive accuracy based on bird vocalizations.
Ovaskainen et al. 2018, Ecology Letters
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State-of-the-art in automated species identification from camera trap data

Automatically identifying, counting, and describing
wild animals in camera-trap images with deep learning

Mohammad Sadegh Norouzzadeh®, Anh Nguyen®, Margaret Kosmala®, Alexandra Swanson?, Meredith S. Palmer®,
Craig Packer®, and Jeff Clune®*!

L DNAS

2018

REVIEW Journal of Animal Ecology [ ecoe

A computer vision for animal ecology

Ben G. Weinstein 2018

. . BRITISH
RESEARCH ARTICLE 2 0 19 Methods in Ecology and Evolution E HL

A comparison of deep learning and citizen science techniques
for counting wildlife in aerial survey images

Colin J. Torney™* | David J. Lloyd-Jones®* | Mark Chevallier® | David C. Moyer® |
Honori T. Maliti* | Machoke Mwita® | Edward M. Kohi* | Grant C. Hopcraft®

SCIENTIFIC REPg}RTS

Insights and approaches using deep
learning to classify wildlife

Zhonggqi Miao*?, Kaitlyn M. Gaynor(®?, Jiayun Wang?, Ziwei Liu?, Oliver Muellerklein®?,
20 19 : Mohammad Sadegh Norouzzadeh*, Alex Mclnturff', Rauri C. K. Bowie([®, Ran Nathan®,
: Stella X.Yu?? & Wayne M. Getz()7




Current state of HMSC.:
Hierarchical Modelling of Species Communities

Selected journal papers and book Software

ECOLI

LEGNINRRERS

Ecology Letters, (2017)

doi: 10.1111/ele.12757

IDEA AND

PERSPECTIVE

How to make more out of community data? A conceptual

framework and its implementation as models and software

H 2 g g o Step 1. Setti del struct d fitting the model [
species distribution modelling o tsetinamodel ucuresndicha hemode ofe @8
. . e, s, ermis, v, T vl 56 & B
. . . [0SR0
Modeling species co-occurrence by multivariate logistic regression So Maﬂy Variables: Joint Of b I g S patl al d ata' sanpleticme(n, thin, samples, transient, nthains) G} ©

generates new hypotheses on fungal interactions

Ors0 Ovaskases, ™ Jexst Horrota,'* asp Juma Sirmoses

Testing the heterospecific attraction
hypothesis with time-series data on species
co-occurrence

Esther Set G alez' 7, José A Sanchez-Zapata®,

Francisco Botella’ and Otso Ovaskainen®

Modeling in Community
Ecology

David |. Warton,"* F. Guillaume Blanchet,” Robert B. O'Hara,”
Otso Ovaskainen,*® Sara Taskinen,” Steven C. Walker,” and
Francis K.C. Hui

Making more out of sparse data: hierarchical modeling

S

of species communities

Or1s0 OvaskAINEN" AND JANNE SoNINeN

Otso Ovaskainen', Gleb Tikhonov', David Dunson’, Vidar Grotan?,

Steinar Engen’, Bernt-Erik Saether’ and Nerea Abrego™

Bryophyte Species Richness on Retention Aspens

ECOLOGY

Tikhonov, G., Duan, L., Abrego, N., Newell,

G., White, M., Dunson, D. and Ovaskainen, O.

Computationally efficient joint

JOINT SPECIES
DISTRIBUTION MODELLING

WITHAPPLICATIONS INR

3.0

HMSC-

R

Joint specics distribution modelling with HMSCR

bioRxiv

effectivesize(mpost)

gelman. diag(mpost)

Step 2. Examining MCMC convergence

mpost = convertToCedaObject(m)

Not satisfactory?
Redomodel
fitting.

WATC = computeRAIC(m)

MF = evaluateModelFit(m, predY)

predY = camputePredictedvalues(m, partition)

Step 3. Evaluating model fit and comparing models

Not satisfactory?
Define bettermodel.

Step 4. Exploring parameter estimates

o] -
. s . " " oFo
Recovers in Time but Community Structure Does Not Uncovering hiddenspatial stuctirg n species oo By
communities with spatially explicit joint species 6 & 0
Anna Oldén'", Otso Ovaskainen®, Janne S. Kotiaho', Sanna Laaka-Lindberg’, Panu Halme' distribution models 5} a [0=0)
—— ©
Otso "%+, David B. Roy’, Richard Fox* and Barbara J. Anderson® Species niches and their links o

Using joint species distribution models for evaluating
how species-to-species associations depend on the
environmental context

Gleb Tikhonov**, Nerea Abrego”, David Dunson® and Otso Ovaskainen'*

Measuring and predicting the influence of traits on the
assembly processes of wood-inhabiting fungi

Nerea Abrogo™+'*, Ama Norbergt” and Otso Ovaskainen'?

Wood-inhabiting fungi with tight associations with other species
have declined as a response to forest management

Nerea Abrego, David Dunson, Panu Halme, Isabel Salcedo and Otso Ovaskainen

Using latent variable models to identify large networks of
ies-to-speci iations at different spatial

scales

Otso Ovaskainen'**, Nerea Abrego™ ', Panu Haime™* and David Dunson®

Cambridge University Press
(in press)

totraits and phylogenies

Bioticinteractions, dispersallimitation,
missing covariates and ecological drift

Step 5. Making predictions

Xnew

Predictor valuesof environmental
covariates, e g representingan
environmental gradient

gnew

Predictor values of spatio-temporal
context, e £ spatial coordinates of
where predictionsaretobe made

>
=

ynew

Predicted
communities

[=

Species richness

Community-weighted
meantraits

Bioregionalzation

Conservation
prioritization

Preparing predictors

Making

andi
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The structure of the LIFEPLAN project

WP3. Developing Transformative
New Methods for Big Data Statistics

C‘grr? rl.uﬁi?;-?_f\tgngP; fﬁ;dss WP2. Generating a Transformative
Ferreloe] S s New Understanding of Life on Earth

D D

WP3.1. Entity resolution models
for complex sensing data

— U~ H U
WP1.1. Sampling of planetary
biodiversity at different

spatiotemporal scales
D D

Raw g SPATIAL _

data WP2.1. Testing of SLESRE Sr;aeutiuogasl WP3.2. Spatial process models

4\" H D—— general community U H ‘U across inhomogenous spatial
1 domains

.2. Parameterizing auto- ecology theory on
mated species identification global patterning of H
algorithms for global data biodiversity TEMPORAL
PATTERNS D

WP3.3. Novel models for
modelling complex temporal

Taxonomid
placement

Modelled
dependency
Raw LIFEPLAN CORE DATA: Dat3
data Calibrated and taxonomically D"H-U
validated spatiotemporal data on [FEREE WP2.2. G_en_era_ting global species D D
species abundance e WP3.4, Scalable algarithms for Upscaling
Bayesian inference from huge of core

Curated dependent data methods
Data
. Senior researcher

models
U<H-H U GBIF AND OTHER MAJOR S

WP1.3. Experimental approaches GLOBALLY RELEVANT Post doc
providing calibration data BIODIVERSITY DATA . Field assistant
PhD student
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Budget details

Direct cost

Personnel

Pl name

Host institution

Pi

Senior staff

Postdocs

Students

Other

Total direct costs for personnel (in

euro)

Travel

Equipment

Other goods and services

Consumables
Publications

Other: Tuition remission
and Audit Fees, field work
costs in Madagascar as
services purchased
through local
collaborating
organizations

Total Other Direct Costs
(in euro)

A — Total Direct Costs (i + ii)

B - Indirect Costs (overheads) 25% of
Direct Costs

C1 - Subcontracting Costs (no overheads)

C1 - Subcontracting Costs with no
overheads

Total Estimated Eligible Costs (A +B + C)

Total Requested Grant

Ovaskainen (O0)

Helsinki Univ.

0

469,360
586,287
375,296

173,837

1,604,780

210,000
1,054,500
810,000

33,000

65,200

2,172,700

3,777,480

944,370

0

0

4,721,850

4,721,850

Roslin (TR)

Swedish Univ. Agric.

Sci

0

0
558,724
410,751

934,897

1,904,372

210,000
1,054,500
810,000

33,000

40,000

2,147,500

4,051,872

1,012,968

0

0

5,064,840

5,064,840

Dunson (DD)

Duke Univ.

919,221
0

651,590
357,844

0

1,928,655

130,418
36,502
5,259

33,000

133,062

338,241

2,266,896

566,724

0

0

2,833,620

2,833,620

919,221
469,360
1,796,601
1,143,891

1,108,734

5,437,807

550,418
2,145,502
1,625,259

99,000

238,262

4,658,441

10,096,248

2,524,062

0

0

12,620,310

12,620,310

Global Sampling Infrastructure:
2,1M€

» Sampling stations (n=200, each
9.820€)
» Cyclone Sampler (2700€)
Malaise Trap (240€)
Ten AudioMoth recorders (850€)
Six Browning Strike Force Game
Cameras (810€)
+ Eight 2TB external hard drives
(520€)
» Consumables (2200€)
» Shipping and customs (2500€)
+ Sample management system 25,000€

Field-work and sequencing: 2,9M€.

+ Logistics coordinator and field team of
two assistants in Sweden (934,897€)

* Field team in Madagascar, services
through local collaborating
organizations (personnel 173,837€,
other costs 55,200€)

« Transport and accommodation of field
teams (120,000€)

* Sequencing 64,800 samples: 1.62M€

» Permits and documentation according
to the Nagoya protocol: 30,000€

Scientific personnel and
resources: 5,1M€

LIFEPLAN HELSINKI TEAM

» Senior researcher, 6-year (469,360€),
* Tree 3-year post docs (586,287€)

* Two 4-year PhD students (375,296€)

LIFEPLAN UPPSALA TEAM
* Three 3-year post docs (558,724€)
* Two 4-year PhD students (410,751€).

LIFEPLAN DUKE TEAM
P1 (30% contribution; 919,221%€)

* Five 2-year post docs (651,590€)

* Four 3-year PhD students (salary
357,844€ and tuition remission fees
120,062€)

RESOURCES

» Travel for team members and
collaborators (430,418€)

+ Computational resources (equipment
36,502€ and consumables 5,259€)

» Publication costs (99,000€)

» Audit fees (33,000€)

24/17



Support from the host institutions and infrastructures

Additional support from the host institutions

 Helsinki contributes a full-time coordinator for the general management of the project.
« Uppsala contributes a full-time lawyer to deal with sample transport permits.

« Duke contributes computational clusters (ca. 60,000€) and storage space (ca. 60,000€).

Relevant infrastructures

« “Thriving Nature” was selected as the 2019 profiling action of University of Helsinki, with specific emphasis
on ecological big data. This will provide 2 tenure track positions (Ecological Data Sciences and Ecological
Networks), and four staff scientists (statisticians / bioinformaticians).

» The Swedish Science for Life Laboratory offers outstanding facilities for the high-throughput DNA work

« Duke has world class computing facilities and support, including access to the Duke Computing Cluster, and
possibilities to leverage immense resources for Artificial Intelligence ($100 million to a new Al centre).



Management of LIFEPLAN

OUR PREVIOUS EXPERIENCE IN MANAGING GRANTS LIFEPLAN MANAGEMENT
* OO was a director of a national Centre * Overall project management from Helsinki
of Excellence, with 60 researchers (meetings, travels, etc.).

* Full-time project coordinator (host support)

* TR has successfully lead ten
international sampling projects
* Global sampling coordination from Uppsala
: : C * Nagoya-savvy lawyer (host support
* DD has directed several interdisciplinary 5o IR e
grants ranging from neurosciences to

tech industry applications  Data management coordinated by Duke

* Extensive computational resources
(host support)

00 7.4ME€ 9.4ME€ 16.8M€ * Detailed database management plan in place
TR 3.6M€ 7.9M€ 11.5M€
DD 6.4M€ 3.1M€ 9.5M€

Total 17.4M€ 10.4M€ 37.8M€



Training the next generation of scientists

-5

Species
2 identification
Workshop

|

Species

Guelp:kg

1Ay

=

Duke A

Distribution

"y Workshop

Shared supervision

Previous example of

0 <

1 Helsinki

Core Data

Analysis
Workshop

Madagascar

Annual meetings
switch places

Longterm work visits
maximize interaction

Cross-WP Workshops
bring key expertise
together around tasks

: One-month visit by PhD student OO — DD resulted in
Tikhonov, G., Duan, L., Abrego, N., Newell, G., White, M., Dunson, D. and Ovaskainen, O.

Computationally efficient joint species distribution modelling of big spatial data. Ecology, in press.




LIFEPLAN timeline

Cross WP meetings: global species distribution modelling
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Cross WP meetings: species identification ICross WP meetings: analysing LIFEPLAN core data
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Data storage & sharing

Back-up data repository

Funds committed by.Duke University
for-data storage and,back-up. ¥ e
(letter from:Dean Mohammed Noor)

Uppsala
Duke , { | Q "
b ) o From physical samples
. .ﬁ)y Main processing site to digital DNA sequences Helsinki
/
Central data repository
[}
e

Organized by sampling site & data type

High-speed connections to

\\
rapidly move data from/to Europe

Local data storage Dedicated LIFEPLAN website

Individual sites

.. . i i i Describes and provides free data access to researchers
Initial data collection and storage Audio recordings for birds P ~
O & 5 (@ s
Numerical data for ecosystem processes o
L . LlFEPLAN- A planetary i
Y By Da? ary Inventory of life - a ne

A combined with novel stah\gtiwmhBS|S built on

Image files for mammals cal methods

) - ]i Dovmioad dagy
Physical samples for fungal spores, soil, insects T



Latitude

We have access to Global Sampling

Global Spore Sampling Project Global Malaise Trap Project
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Global Spore Sampling Project pilot data

(unpublished)

336 samples

31 locations

Cyclone sampler

Corn smut is a plant disease caused by
the pathogenic fungus Ustilago maydis
that causes smut on maize and teosinte

Cy @
., family: ‘

| Ustilaginaceae

genus
'sped‘e'é

160,000 species

' Locations from which the pilot data @

were acquired

e Other locations with ongoing

100 million sequences sampling

* Sampling locations where we recorded U. maydis
® Sampling locations where we recorded A. fumigatus

‘ Reliable taxonomic placement
O Reliable taxonomic placement currently not possible

Taylor and Keller (2009). Clinical Microbiology Reviews.

)

richocomaceae ‘% !

‘; '~ Aspergillus fumigatus causes

<y 4 disease in individuals with
S immunodeficiency
_
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Audio Pilot data

4 ECOLOEYISENERS to score 600,000 one-minute audio segments for the
We use Animal Sound Identifier (ASI): software for automated presence-absence of 60 diurnal bird species in the Amazon.

identification of vocal animals

We analysed the data to understand....

....the structure of beta-diversity over space and time ...self-similarity of bird vocalization

Past forest fragmentation

can be HEARD for decades ECOG RAP HY

rf}j‘l = [UNDER PREPARATION]

number of species

'® Primary forest
'@ Secondary forest

minutes days years sites



How much sampling is needed to represent Global
Biodiversity?

Pilot data from the Global ,»
Malaise Trap Project b el

10M —

Number of samples per location

40 }
M ° 30 LIFE-
g S o PLAN
@ | ® 5
510 o2 Current
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2 10K —
é of global
1K a_rthropod
diversity
100 —
[ [ [ [ | | [
1 5 10 50 1000 10000

Number of sampled locations

LIFEPLAN will generate 48 samples for each of 450 locations

Number of species

Pilot data from the Global

Spore Sampling Project

\
10M —Number of samples per location
® 10 }
h ® 5 LIFE- /
1M
® 2
o PLAN
100K Current
/ estimate
10K - / of global
. fungal
diversity
100 —
| [ I [ | | |
1 5 10 50 1000 10000

Number of sampled locations
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Is It possible to infer ecological processes from the

data on biodiversity patterns?

» Theoretically no, because different processes can result in identical patterns
* Yet our methods are aimed at linking observational data on to the underlying community

assembly processes

Papers in press providing tools to link data on patterns to underlying processes:

. - OGRAPHY

o What can observational data reveal about metacommunity
processes?

5
Otso Ovaskainen, Joel Rybicki and Nerea Abrego

rﬂ(\/\

Article

A unified framework for analysis
of individual-based models in

ecology and beyond
Stephen J Cornell, Yevhen Supruneko, Dmitri
Finkelshtein, Panu Somervuo and Otso Ovaskainen

a. Metacommunity scenarios

Neutral paradigm Patch dynamics

(if’{;ﬁ)

£5 E&) | @0
(@

Species sorting Mass effects

¥ (¥
>0 0f

\\.J/

Habitat patch type 1~ #¢ Species A
Habitat patch type 2 "Q‘ Species B

=

b. Data collection

Spatial sampling design

d. Linking patternsto
processes
g == s

P

W
>
L

c. Statistical analysis

ANALYSIS OF
HABITAT

VARIATION BETA-DIVERSITY

INDICES

Q DISTANCE-BASED

% VARIATION
o

PARTITIONING
JOINT SPECIES

DISTRIBUTION
MODELLING

DISTANCE-BASED
REDUNDANCY
ANALYSIS
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Recent research activity: published in 2019 or in press

10.
11.

12.

13.

14.
15.
16.

17.
18.
19.

20.
21.

OO0, DD, TR. A comprehensive evaluation of predictive performance of 33 species distribution models at species
and community levels. Ecological Monographs.

0O, TR. SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences
and intraspecific abundance change using DNA barcodes or mitogenomes. Molecular Ecology Resources.

OO0, TR. Spatio-temporal scaling of biodiversity in acoustic tropical bird communities. Ecography.
OO, DD. Computationally efficient joint species distribution modelling of big spatial data. Ecology.
0OO0. Joint Species Distribution Modelling — With Applications in R. Cambridge University Press.

0OO. A unified framework for analysis of individual-based models in ecology and beyond. Nature
Communications.

OO. Soil fertility in boreal forest relates to root-driven nitrogen retention and carbon sequestration in the mor layer.
New Phytologist.

0OO0. Handbook for standardised measurement of macrofungal functional traits; a start with basidiomycete wood
fungi. Functional Ecology.

OO0. Long-term shifts in water quality show scale-dependent bioindicator responses across Russia - insights from
40 year-long bioindicator monitoring program. Ecological Indicators.

0OO0. Joint species movement modelling: how do traits influence movements? Ecology.

OO.IScaIing up the effects of inbreeding depression from individuals to metapopulations. Journal of Animal
Ecology.

0O0. Experimentally induced community assembly of polypores reveals the importance of both environmental
filtering and assembly history. Fungal Ecology.

OO. Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a
heterogeneous environment. Heredity.

0OO. What can observational data reveal about metacommunity processes? Ecography.
0OO0. Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecology.

0OO0. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits
of the butterfly or its hostplant. Environmental Microbiology.

0OO. Metapopulation models. Encyclopedia of Ecology, Elsevier.
OO. Species distribution models. Handbook of Environmental and Ecological Statistics, Chapman & Hall/CRC.

0OO0. Temporal sampling and abundance measurement influences support for occupancy-abundance relationships.
Journal of Biogeography.

TR. An ecosystem-wide reproductive failure with more snow in the Arctic. PLoS Biology.

TR. Spatial variability in a plant-pollinator community across a continuous habitat: high heterogeneity in the face of
apparent uniformity. Ecography.

Co-authors omitted to compact list

22.

23.
24,

25.

26.

27.

28.

29.
30.

31
32.
33.
34.

35.
36.

37.
38.
39.

TRd A qulemtitative framework for investigating the reliability of empirical network construction. Methods in Ecology
and Evolution.

TR. Landscape connectivity explains interaction network patterns at multiple scales. Ecology.

TR. Establishing arthropod community composition using metabarcoding: surprising inconsistencies between soil
samples and preservative ethanol and homogenate from Malaise trap catches. Molecular Ecology Resources.

TR. Flower-visitor communities of an arcto-alpine plant— global patterns in species richness, phylogenetic diversity
and ecological functioning. Molecular Ecology.

TR. Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological
interaction networks. Ecography.

TR. Assessing changes in arthropod predator-prey interactions through DNA-based gut content analysis — variable
environment, stable diet. Molecular Ecology.

TR. Finding flies in the mushroom soup: host specificity of fungus-associated communities revisited with a novel
molecular method. Molecular Ecology.

TR. Impacts of urbanization on insect herbivory and plant defenses in oak trees. Oikos.

TR. Special issue on species interactions, ecological networks and community dynamics: untangling the entangled
bank using molecular techniques. Molecular Ecology.

DD. Bayesian sparse linear regression with unknown symmetric error. Information and Inference.
DD. The Hastings algorithm at fifty. Biometrika.
DD. On posterior consistency of tail index for Bayesian kernel mixture models. Bernoulli.

DD. Comparing and weighting imperfect models using D-probabilities. Journal of the American Statistical
Association.

DD. Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods. Biometrika.

DD. Intrinsic Gaussian processes on complex constrained domains. Journal of the Royal Statistical Society
Series B.

DD. Common and individual structure of brain networks. The Annals of Applied Statistics .
DD. Symmetric Bilinear regression for signal subgraph estimation. IEEE Transactions on Signal Processing.
DD. Tensor network factorizations: Relationships between brain structural connectomes and traits. Neurolmage.

DD. Nonparametric Bayes models of fiber curves connecting brain regions. Journal of the American Statistical
Association.
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Recent research activity: submitted manuscripts

1. OO, TR. Monitoring fungal communities with the Global Spore Sampling Project.

2. 0O, TR. Early and late phenological events are constrained by local differentiation in reaction norms.

3. OO, TR. Chronicles of Nature Calendar: A long-term and large-scale multitaxon database on phenology.
4

OO0, TR. Host-plant specialization of root-associated fungi along elevation: Higher specialization of
endophytes than mycorrhizal fungi.

5. OO. Defaunation is a key driver of functional loss in a tropical biodiversity hotspot.

6. 0OO. Refining predictions of metacommunity dynamics by modelling species non-independence.

7. OO. Bioregions: combining biological and environmental data for management and scientific understanding.
8. 0O0. Movement syndromes of a Neotropical frugivorous bat inhabiting a heterogeneous landscape in Brazil.
9. 0OO. The relative importance of local and regional processes to metapopulation dynamics.

10. OO. Co-occurrences of tropical trees: disentangling abiotic and biotic forces.

11. OO. Joint species distribution modelling with HMSC-R.

12. OO. Ten precautionary principles to ensure ecological soundness of conservation translocations of red-listed
wood-inhabiting fungi.

13. OO. I. Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude.
14. OO. Spatial synchrony is related to the rate of environmental change in Finnish moth communities
15. OO. Maternal effects and environmental filtering shape seed fungal communities in oak trees.

16. OO. llkka Aulis Hanski. 14 February 1953 - 10 May 2016.

17. OO. Forest and connectivity loss drive changes in movement behavior of bird species.

18. 0OO. The ghost of the hawk: top predator shaping bird communities in space and time

19. OO. Landscape of fear hypothesis explains spatio-temporal occurrence and co-occurrence of large and
medium mammals.

20. OO. Fragmented tropical forests lose quantity and quality of mutualistic interactions.

21. 0O. Habitat fragmentation and species diversity in competitive species communities.

22. OO. Predicting parasite associations and community composition using joint species distribution models.
23. 0O0. DNA barcoding and modelling illuminate complex host-parasitoid dynamics.

24. TR. Local management actions override farming systems in determining dung beetle species richness,
abundance and biomass and associated ecosystem services

25. TR. Climate and host genotype jointly shape tree phenology, disease levels and insect attacks.

26. TR. Host plant phenology, insect outbreaks and herbivore communities — the importance of timing

27. TR. Heated rivalries: Shifting phenology modifies competition for pollinators among arctic plants.

28. TR. Murderous but sensitive: parasitoids indicate major climate-induced shifts in Arctic communities.

Co-authors omitted to compact list

29.
30.
31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41,
42,
43
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54,
55.
56.
57.
58.

TR. Land-use intensity affects the potential for apparent competition within and between habitats.

TR. Compound- and context-dependent effects of antibiotics on greenhouse gas emissions from livestock.
TR. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community

TR. Birds of a feather advance their breeding together.

TR. Can school children support ecological research? Lessons from the ‘Oak bodyguard’ citizen science
project.

TR. Land-use intensity affects the potential for apparent competition within and between habitats.
DD. Removing the influence of a group variable in high-dimensional predictive modelling.
DD. Bayesian inferences on uncertain ranks and orderings

DD. Modular Bayes screening for high-dimensional predictors.

DD. Bayesian distance clustering.

DD. Bayesian factor analysis for inference on interactions.

DD. Random orthogonal matrices and the Cayley transform.

DD. Supervised multiscale dimension reduction for spatial interaction networks.

DD. Monte Carlo simulation on the Stiefel manifold via polar expansion.

DD. Bayesian cumulative shrinkage for infinite factorizations.

DD. Maximum pairwise Bayes factors for covariance structure testing.

DD. Classification via local manifold approximation.

DD. Geodesic distance estimation with spherelets.

DD. Efficient manifold and subspace approximation with spherelets.

DD. Reducing over-clustering via the powered Chinese restaurant process.

DD. Targeted random projection for prediction from high-dimensional features

DD. Estimating densities with nonlinear support using Fisher-Gaussian kernels.

DD. Constrained Bayesian inference through posterior projections.

DD. Bayesian modular and multiscale regression..

DD. Nonparametric Bayesian graphical model for counts.

DD. Bayesian time-aligned factor analysis of paired multivariate time series

DD. Multivariate mixed membership modelling: Inferring domain-specific risk profiles.
DD. Efficient posterior sampling for high-dimensional imbalanced logistic regression.
DD. Bayesian mosaic: Parallelizable composite posterior.

DD. Efficient entropy estimation for stationary time series.
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Calibration data for fungal DNA

AIM: Convert samples to estimates of spore density and local spore production rate

DONE: Convert sequence number to estimates of DNA abundance ”...corresponds to 0.029 ng of fungal
eDNA per cubic meter of air....” (Ovaskainen et al., manuscript)

ONGOING: Collected soil and air samples at distances of 1km, 10km, 100km and 500 km to understand
how "regional” the samples are.

TO DO IN LIFEPLAN: Sampling at various distances and directions from known point source.

A\

Grid of cyclone samplers

Fungal fruit-bodies with total spore
production rate measured
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Calibration data for Malaise traps

AIM: Convert samples to estimates of insect density (hnumber / ha)

DONE: Convert mass-sequenced samples into species-specific

estimates of DNA abundance

TO DO IN LIFEPLAN: mass mark-recapture of insects released
at different distances from Malaise traps

Paint-marked insects

RESOURCE ARTICLE

MOLECULAR ECOLOCGY
MOLECULS WILEY

SPIKEPIPE: A metagenomic pipeline for the accurate
quantification of eukaryotic species occurrences and
intraspecific abundance change using DNA barcodes or
mitogenomes
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Grid of malaise traps
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Calibration data for audio recorders

AIM: Convert audio-recordings on birds into estimates of species density (number of
Individuals / ha) around the sampling area.

TO DO IN LIFEPLAN: Grid recorders to identify detection radius, combined with territory mapping to
obtain calibration data on species density

Recorders within the detection
radius from the singing birds

Grid of audio recorders
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Calibration data for camera traps

AIM: Convert camera-trap images on mammals into estimates of species density
(number / ha)

TO DO IN LIFEPLAN: Detect GPS-collared individuals with a grid of camera traps

Setting a GPS-collard to a
jaguar in Pantanal (Brazil).
Photo by OO.

Grid of camera traps
Camera traps that detect the ﬁ P

GPS-collared individual
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LIFEPLAN key collaborators

Integration LIFEPLAN
DNA-based species
identification methods into
the BOLD

Key collaborator for high-
throughput sequencing

Access to Global Malaise
[I?rof. P?h’l CHebefrt Trapping Data as an
Irector of the Centre for o g
important pilot dat
Biodiversity Genomics, PO Bk Gl
University of Guelph,
Canada

BOLDSYSTEMS

BARCODE OF LIFE DATA SYSTEM

Advancing biodiversity science through DNA-based species identification.

Prof. Brian Fisher
California Academy of Sciences, USA

Logistics in Madagascar. Fisher
maintains the Madagascar
Biodiversity Center in
Antananarivo, and holds
unparalleled experience in
working in this region.

Prof. Fredrik Ronquist
Head of the Department of
Bioinformatics and Genetics, Natural
History Museum, Sweden

Access to the pilot data
generated by the Comparative
Insect Biomics project, a one-
year sampling campaign run in
Sweden and Madagascar
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Global Bird Listening Project

Species
identifications
Global audio database and their
Distributed sampling reliability
1,000,000,000 audio files of estimates

10 seconds each

Parameterization of
classification models

Generating training data
I Step 1. deniificaton of feter candidates
Classification
features
extracted by
machine
learning
methods

Distributed
annotation of
classification
features




